

MICROSAT S Y S T E M S

MicroSat Systems

2003 Small Payload Rideshare Conference June 10-11, 2003 KSC Visitor Center

MicroSat Systems Products

Capabilities Include:

- Mission Design
- Systems Engineering
- Spacecraft Design
- Assembly, Integration & Test
- Launch Vehicle Integration
- Mission Operations

Winner of 2002 Tibbetts Award

Small Satellites

- Low Cost: <\$10M Recurring
- Lightweight: Up to 500 Kg
- Rapid Development: 18-24 Months
- High Performance: 3-Axis Stabilized, Inter-satellite Link, Formation Flying

Satellite Subsystems

- Solar Arrays
 - Low Cost: \$500/watt
 - High Specific power: 150 watt/Kg
 - Small Stowage Volume: 45 Kw/m³
- Composite Structures
 - Lightweight: <1 kg Chassis
 - Compact Footprint: 3UcPCI
 - High Watt Density Capability
- Micro-Mass Storage Module (MMSM)
 - 160 GByte Hard Drive Memory for Space Applications
 - 800 Mbps data rate
 - 50% Mass/Cost Savings over Solid State Memories

Flexible Thin-Film
 Photovoltaics
 High Radiation
 Tolerance

Graphite / Polycyanate Sandwich Panels

Micro-Mass Storage Module

Prestigious national award made annually to companies judged to exemplify the very best in Small Business Innovative Research achievement.

Role of Micro-Satellites

Commercial Applications

- Specialized Communications Services (Voice, Data)
- Earth Observation (EO) and Remote Sensing
- Space Science
- Technology Demonstration & Verification
- Education and Training

S/C Adaptable to Many LV's

- S/C Conform to Multiple Launch Vehicles
 - Easy fit In Existing & In Development LV's
 - Launch as Primary, Secondary, Multi-Launch
- Ability to Reconfigure for Multiple Missions
 - Communications
 - Remote Sensing/Imaging
 - Space Weapons Platform
 - Formation Flying

MSI Bus Evolution

2000 2010 2005 **Add Common** Rapid Response **Increase Utility** processes & Subsystems Team **Encounter** TechSat 21 **DARPA Flight Experiment** HSI **Mission SAR Mission**

TechSat 21 Overview

Mission Overview

- US AFRL program with MSI as the Prime Integrator
- Three Satellites Flying in Very Close Formation
- Collaborative Sparse Aperture Radar
- Validate Microsatellite Technologies

Spacecraft Overview

- Compatible with EELV Secondary Payload, Pegasus and Other LV's
- Successful Critical Design Review in October '02
- Integration & Test Started January '03
- \$3M Congressional add in '03
- Exploring Transition of Program from AFRL in '04

Development Status

TechSat 21 Space Vehicle

One of the Most Capable Spacecraft Buses Under 100 kg Ever Developed

Space Vehicle Mass

- 88 kg Bus
- 79 kg Payload Allocation

Attitude Control

- 0.10 deg Pointing Control
- 0.02 deg Pointing Knowledge
- 3-Axis Stabilized
- Zero Momentum Biased

Flight Software

- Command and Telemetry
- ADCS
- Safe Hold
- OSE OS

Electrical Power

- 28 V Unregulated
- 433 WOAP; 2380 W Peak
- 150 W/kg CIGS Solar Wings
- 150 W-Hr/kg LI Polymer Battery

Command & Data Handling

- 3U cPCI Architecture
- RAD 750 CPU
- 160 Gbytes Mass Storage
- 640 Mbps Data Transfer Rate

Structures & Mechanisms

- Gr/Pc Composite Panels
- NADIR Pointing Payload Deck
- G&H Burn Wire Sep Devices

Telemetry, Tracking, & Command

- 50 Kbps Encrypted S-Band Uplink
- 500 Kbps S-Band; 128 Mbps X-Band
- 160 Kbps S-Band Intersatellite Link
- On-Board GPS Receiver

Advanced Micro-satellite Technologies MICROSATE

Precision Metrology

- Differential Carrier Phase GPS
 - Ultra-Stable Oscillator
- 160 kbps Intersatellite Datalink

Cluster Management

- Formation Flying Autonomous C² of Cluster
- Distributed Aperture Processing

Lithium Polymer Battery

-150 W-hr/kg - 175 W/kg

Thin-Film Photovoltaic Solar Array

- 150 W/kg
- Small Stowage Volume
- Lightweight Deployment Mechanism

3 Axis Attitude Control

- Miniature Reaction Wheels
- 0.02 Degree Pointing Knowledge

Xe Hall Effect **Thruster**

- 1200 Sec ISP

Lightweight **Electronics Chassis**

- < 1 kg Chassis
- 3U cPCI Avionics

On-Board Mass Storage

- 160 GBytes @ 4 kg
- Space Qualified Hard Drive Enclosure

High Speed On-Board Processor

- 160 MIP RAD 750

ESA Antenna Array

Microsats Enabling Rapid Response

Spacecraft Enablers

- Computer Industry Procurement Style
- Launch on Demand (LOD) Architecture
- Web Based Integration and Test
- New Spacecraft Design Approaches

Launch On Demand Being Enabled

- Military: RASCAL & F-15
- Ground/Sea Mobile Launchers

System Utility

- Small spacecraft to any LEO inclination
- Rapid and Affordable Access
- Able to quickly respond to new situations

Procurement: Computer Industry

Computer Industry

Customer Provides:

- Functions to Perform
- Peripherals w/ Expandability
- Available Funds & Schedule

Distributor Provides:

- Appropriate Products
- AI&T
- Load S/W and Checkout

Customer:

- Integrates Peripherals
- Loads Application S/W
- Performs Checkout Using On-Line Tech Support

Inventory

- System Components
- Peripheral or Payload Specs
- Tower or Launch Systems

Space Industry

Customer Provides:

- Mission Requirements
- Payloads w/ Expandability
- Available Funds & Schedule

Distributor Provides:

- Appropriate Products
- AI&T
- Load S/W and Checkout

Customer:

- Integrates Payloads on Bus
- Integrates S/C on LV
- Performs Checkout Using On-Line Tech Support

LOD Architecture

Build Missions around family of "Core" vehicles

Web Based Integration and Test

Enables Real-Time Multi-Tasking of Remote Personnel

Features

- Engineering Support From Desk Work Station,
 While Out of Office, Emergency Off Hours
- Data to Sub-Contractors/ Customers
 Benefits
- Maximize Effciency of Shared Resoures
- Reduce Labor/Travel Cost/Schedule

MICROSAT

New Spacecraft Design Approaches

Example: Collapsible Structure

- Utilize emerging MEMS technology
- Compact Bus for Launch Allows Easier Multiple Spacecraft Launch Capabilities
- Compact Bus reduces distance of spacecraft CG from separation plane for reduced launch loads, thus reduced structural mass
- Integrates Computer Build Methodology
- Expansion allows for "On Orbit" addition of larger payload/avionics
- Expansion allows for greater moment arm for propulsion reaction thus conserving fuel

Summary

- MSI Preparing to Meet Responsive Space Needs
- Automated, Standardized Integration and Test Processes, Smart Interfaces
- Highly Maneuverable small satellites

